Assimilation of Smos Retrieved Soil Moisture into the Land Information System

نویسندگان

  • Clay Blankenship
  • Jonathan Case
  • Bradley Zavodsky
  • Gary Jedlovec
چکیده

Soil moisture retrievals from the Soil Moisture and Ocean Salinity (SMOS) instrument are assimilated into the Noah land surface model (LSM) within the NASA Land Information System (LIS). Before assimilation, SMOS retrievals are bias-corrected to match the model climatological distribution using a Cumulative Distribution Function (CDF) matching approach. Data assimilation is done via the Ensemble Kalman Filter. The goal is to improve the representation of soil moisture within the LSM, and ultimately to improve numerical weather forecasts through better land surface initialization. We present a case study showing a large area of irrigation in the lower Mississippi River Valley, in an area with extensive rice agriculture. High soil moisture value in this region are observed by SMOS, but not captured in the forcing data. After assimilation, the model fields reflect the observed geographic patterns of soil moisture. Plans for a modeling experiment and operational use of the data are given. This work helps prepare for the assimilation of Soil Moisture Active/Passive (SMAP) retrievals in the near future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Model Parameter Convergence when Using Data Assimilation for Soil Moisture Estimation

Data assimilation (DA) methods are commonly used for finding a compromise between imperfect observations and uncertain model predictions. The estimation of model states and parameters has been widely recognized, but the convergence of estimated parameters has not been thoroughly investigated. The distribution of model state and parameter values is closely linked to convergence, which in turn im...

متن کامل

Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission

Microwave radiometry at low frequencies (L-band: 1.4 GHz, 21 cm) is an established technique for estimating surface soil moisture and sea surface salinity with a suitable sensitivity. However, from space, large antennas (several meters) are required to achieve an adequate spatial resolution at L-band. So as to reduce the problem of putting into orbit a large filled antenna, the possibility of u...

متن کامل

Re-thinking Sensitivity of Model Parameter Values in Soil Moisture Assimilation Using the Evolutionary Data Assimilation

The sensitivity of land surface model parameters is usually examined for one parameter at a time in response to changes in observation data and/or the model estimated output. This parameter independence approach assumes that there are limited interactions between model parameters a precondition which is highly unlikely for land surface models. Additionally, the model parameter values are widely...

متن کامل

Modeling approaches to assimilating L band passive microwave observations over land surfaces

Microwave radiometry at low frequencies (L-band: 1.4 GHz, 21 cm) is an established technique for estimating surface soil moisture and sea surface salinity with a suitable sensitivity. However, from space, large antennas (several meters) are required to achieve an adequate spatial resolution at L-band. So as to reduce the problem of putting into orbit a large filled antenna, the possibility of u...

متن کامل

Validation of SMOS Soil Moisture Products over the Maqu and Twente Regions

The validation of Soil Moisture and Ocean Salinity (SMOS) soil moisture products is a crucial step in the investigation of their inaccuracies and limitations, before planning further refinements of the retrieval algorithm. Therefore, this study intended to contribute to the validation of the SMOS soil moisture products, by comparing them with the data collected in situ in the Maqu (China) and T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014